Similarity Clustering of Dimensions for an Enhanced Visualization of Multidimensional Data

نویسندگان

  • Mihael Ankerst
  • Stefan Berchtold
  • Daniel A. Keim
چکیده

The order and arrangement of dimensions (variates) is crucial for the effectiveness of a large number of visualization techniques such as parallel coordinates, scatterplots, recursive pattern, and many others. In this paper, we describe a systematic approach to arrange the dimensions according to their similarity. The basic idea is to rearrange the data dimensions such that dimensions showing a similar behavior are positioned next to each other. For the similarity clustering of dimensions we need to define similarity measures which determine the partial or global similarity of dimensions. We then consider the problem of finding an optimal oneor two-dimensional arrangement of the dimensions based on their similarity. Theoretical considerations show that both, the oneand the two-dimensional arrangement problem are surprisingly hard problems, i.e. they are NPcomplete. Our solution of the problem is therefore based on heuristic algorithms. An empirical evaluation using a number of different visualization techniques shows the high impact of our similarity clustering of dimensions on the visualization results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Empirical Comparison of Distance Measures for Multivariate Time Series Clustering

Multivariate time series (MTS) data are ubiquitous in science and daily life, and how to measure their similarity is a core part of MTS analyzing process. Many of the research efforts in this context have focused on proposing novel similarity measures for the underlying data. However, with the countless techniques to estimate similarity between MTS, this field suffers from a lack of comparative...

متن کامل

A Framework for Optimal Attribute Evaluation and Selection in Hesitant Fuzzy Environment Based on Enhanced Ordered Weighted Entropy Approach for Medical Dataset

Background: In this paper, a generic hesitant fuzzy set (HFS) model for clustering various ECG beats according to weights of attributes is proposed. A comprehensive review of the electrocardiogram signal classification and segmentation methodologies indicates that algorithms which are able to effectively handle the nonstationary and uncertainty of the signals should be used for ECG analysis. Ex...

متن کامل

Visualization of Asymmetric Clustering Result with Digraph and Dendrogram

Asymmetric cluster analysis is one of the most useful methods together with asymmetric multidimensional scaling (MDS) to analyze asymmetric (dis)similarity data. In both methods, visualization of the result of the analysis plays an important role in the analysis. Some methods for visualizing the result of the asymmetric clustering and MDS have been proposed (Saito and Yadohisa, Data Analysis of...

متن کامل

Composite Kernel Optimization in Semi-Supervised Metric

Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...

متن کامل

Node Similarity-based Graph Clustering and Visualization

The basis of the presented methods for the visualization and clustering of graphs is a novel similarity and distance metric, and the matrix describing the similarity of the nodes in the graph. This matrix represents the type of connections between the nodes in the graph in a compact form, thus it provides a very good starting point for both the clustering and visualization algorithms. Hence vis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998